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1 Introduction

In this tutorial, I will demonstrate how to prove that a series of assembly optimizations preserve the
semantics of a concrete assembly program. To do this, I will use the Coq[coq] theorem prover and
the VeLLVM[ZBY+21] framework based on Interaction Trees(abv. itrees)[XZH+19]. We will begin in
Section 2, where the model assembly language (abv. asm) and itrees will be introduced along with some
simple examples. Section 3 will demonstrate the equational reasoning principles of itrees via a proof
that two basic blocks are syntactically bisimilar. We will see that syntactic bisimilarity of assembly
programs is limited and introduce semantic bisimilarity in Section 4. At that point, we will have
enough tools to demonstrate the equivalence of an assembly program after multiple transformations
including dead branch elimination, block fusion, constant propagation, and constant folding Section 5.
All the code for this tutorial can be found here.
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2 Preliminaries

We will begin with the definition of a model assembly language followed by the definition of itrees.

2.1 Asm

The definition of Asm presented in Figure 1 is taken almost directly from the Itrees tutorial here.

(* type of memory addresses, registers,

and values this language can manipulate *)

Definition addr : Set := string.

Definition reg : Set := nat.

Definition value : Set := nat.

(* constants and registers are operands. *)

Variant operand : Set :=

| Oimm (_ : value)

| Oreg (_ : reg).

(* instructions (not all displayed) *)

Variant instr : Set :=

| Imov (dest : reg) (src : operand)

| Iadd (dest : reg) (src : reg) (o : operand)

| Iload (dest : reg) (addr : addr)

...

(** both direct and conditional jumps *)

Variant branch {label : Type} : Type :=

| Bjmp (_ : label) (* jump to label *)

| Bbrz (_ : reg) (yes no : label) (* conditional jump *)

| Bhalt. (* used to represent termination *)

(* a block is a sequence of instructions followed by a branch *)

Inductive block {label : Type} : Type :=

| bbi (_ : instr) (_ : block)

| bbb (_ : branch label).

Record asm (A B: nat) : Type :=

{

internal : nat;

code : fin (internal + A) -> block (fin (internal + B))

}.

Figure 1: Asm Definition

This model assembly language is quite simple when contrasted with the model of LLVM in Vellvm
seen here. There is nothing particularly surprising about this definition except for the definition
of asm (A B : nat). Block labels in an asm program categorized as internal or external labels.
Internal represent the number of internal labels used to link up basic blocks within an asm program
which are not exposed to other asm programs. The number A in asm A B represent the number of
blocks have an entry branch into the asm program while B represent the number of blocks that have an
exit branch out of the asm program. The interaction trees tutorial provides basic combinators to build
up assembly programs including: seq_asm to sequence two assembly programs, app_asm to juxtapose
two blocks next to eachother, and loop_asm to form loops. As an example, Figure 2 shows a simple
assembly program and Figure 3 shows the code to describe this program. We will come back to this
program in Section 5.
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bb1 :
r1 := 0
Bbrz r1 bb2 bb3

bb2 :
r2 := 3
Bjmp bb4

bb3 :
r2 := 4
Bjmp bb4

bb4 :
r2 := r2 + 1
Bhalt

Figure 2: Asm program 1

(* definition of the basic blocks of program 1 *)

Definition bb1 : block (fin 2):=

after [

Imov 1 (Oimm 0)

] (Bbrz 1 f0 (fS f0)).

Definition bb2 : block (fin 1) :=

after [

Imov 2 (Oimm 3)

] (Bjmp f0).

Definition bb3 : block (fin 1) :=

after [

Imov 2 (Oimm 4)

] (Bjmp f0).

Definition bb4 : block (fin 1) :=

after [

Iadd 2 2 (Oimm 1)

] (Bhalt).

(* block -> asm *)

Definition a_bb1 : asm 1 2 := raw_asm_block bb1.

Definition a_bb2 : asm 1 1 := raw_asm_block bb2.

Definition a_bb3 : asm 1 1 := raw_asm_block bb3.

Definition a_bb4 : asm 2 1 := raw_asm (fun _ => bb4).

(* use asm combinators to link blocks together *)

Definition middle : asm (1 + 1) (1 + 1)

:= app_asm a_bb3 a_bb2. (* tensor product *)

Definition bottom : asm (1 + 1) 1

:= seq_asm middle a_bb4. (* loop combinator + renaming *)

Definition prog1 : asm 1 1

:= seq_asm a_bb1 bottom. (* loop combinator + renaming *)

Figure 3: Code for program 1

3



2.2 Interaction Trees

CoInductive itree (E : Type -> Type)(R : Type) : Type :=

| Ret (r : R)

| Tau (t : itree E R)

| Vis {A : Type} (e : E A)(k : A -> itree E R).

Figure 4: itree definition

An itree is a potentially infinite tree with three types of nodes and is parameterized by two types; E
represent the type of effects this tree supports and R is the return type of the computation.

• A Ret node, which stands for return, is a leaf holding a value r of type R.

• A Tau node, empty node which has one successor, is used to represent computation which has
no “visible” effect on the environment.

• A Vis node, or visual node, is a node with an effect e and a continuation k which determines
the successors of this node.

To give some intuition, Figure 6 demonstrates four simple itrees. For these examples, our effect type
E will be a simple IO effect representing the ability to read (In) and write(out) from a terminal.

• boring : itree IO nat ≜ a program with just returns the natrual number 42.

• spin : itree IO nat ≜ a program which spins forever without acting on its environment.

• echo : itree IO void ≜ a program which prompts the user for input, prints the input, and
repeats forever.

• kill9 : itree IO string ≜ a program which prompts the user for input, only halting if the
input is "9".

(* a simple IO effect *)
Inductive IO : Type -> Type :=
| Input : IO string
| Output : string -> IO unit.

(* constant *)
CoFixpoint boring : itree IO nat := Ret 42.

(* spins forever *)
CoFixpoint spin : itree IO nat := Tau spin.

(* prompt for input, print input, repeat forever *)
CoFixpoint echo : itree IO void

:= Vis (Input)
(fun (str : string) =>

Vis (Output str)
(fun (_ : unit) => echo)).

(* prompt for input until "9" is given,
in which case terminate *)

CoFixpoint kill9 : itree IO string
:= Vis (Input)

(fun (str : string) =>
if (str =? "9")
then (Ret "done")
else kill9).

Figure 5: Coq code for example programs Figure 6: Example itree programs

Interaction trees may appear deceptively simple, but they are able to capture many notions of com-
putation. The main reason we are interested in interaction trees is that they have a rich equational
theory (which will shown in Section 3) to prove when two interaction trees are bisimilar. Bisimu-
lation is a way to define when two systems “behave the same” relative to an external observer and
independent of their internal structure. This is a powerful reasoning principle that can be used to
express equivalence between different languages. For instance, if we can denote programs of a simple
imperative programming language and an assembly language as interaction trees, we can reason about
when both programs are bisimilar, or behave the same.
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2.3 Asm Programs as Itrees

In order to reason about bisimilarity of asm programs, we must first provide a map from asm programs
to itrees. This mapping is partially demonstrated by Figure 7 and the code can be found in the
IteractionTrees repostitory here. The transformation is relatively obvious once you are familiar with
the language of itrees. For example, the denotation of add instruction Iadd d l r with destination
register d, left operand (register) l, and right operand r is the denotation of each of the operands
which results in natural numbers lv and rv respectively which are added together and mapped to the
destination register by trigger (SetReg d (lv + lr)). The full denotation function is constructed
piece wise from each asm language component (block, instr, etc..).

Definition denote_operand (o : operand) : itree E value :=
match o with
| Oimm v => Ret v
| Oreg v => trigger (GetReg v)
end.

Definition denote_instr (i : instr) : itree E unit :=
match i with
| Imov d s =>

v <- denote_operand s ;;
trigger (SetReg d v)

| Iadd d l r =>
lv <- trigger (GetReg l) ;;
rv <- denote_operand r ;;
trigger (SetReg d (lv + rv))

| ...

Definition denote_br {B} (b : branch B) : itree E B :=
match b with
| Bjmp l => ret l
| Bbrz v y n =>

val <- trigger (GetReg v) ;;
if val:nat then ret y else ret n

| Bhalt => exit
end.

Fixpoint denote_bk {B} (b : block B) : itree E B := ...

Definition denote_bks {A B : nat} (bs: bks A B): sub (ktree E) fin A B :=

Definition denote_asm {A B} : asm A B -> sub (ktree E) fin A B :=

Figure 7: Denote asm as itree

3 Syntactic Bisimilarity

We can see the equational reasoning of itrees in action with a simple example: proving that two ex-
actly equal basic blocks are bisimilar. The code for this demo is in the VeLLVM-Exploration repository
here.

Definition bb0 : block (fin 1) :=
after [

Iadd 1 1 (Oimm 1)
] (Bjmp f0).

Definition bb1 : block (fin 1) :=
after [

Iadd 1 1 (Oimm 1)
] (Bjmp f0).

Figure 8: Coq definition of basic blocks

bb0 :
r1 := r1 + 1

bb1 :
r1 := r1 + 1

Figure 9: exactly equal basic blocks

lv <- trigger (GetReg 1);;
rv <- Ret 1;;
trigger (SetReg 1 (lv + rv)));;
Ret f0

Figure 10: Denotation of BB0 and BB1

Since these basic blocks are exactly equal, their denotations are exactly equal by congruence. But
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for demonstrative purposes, we are going to manually prove their bismiliarity with equational rules
provided by the interaction trees library:

• eqit_Ret: Says that two Ret nodes (Ret r1),(Ret r2) are bisimilar when their return values
are related by a relation Rel.

• eqit_Vis: Says that two Vis nodes (Vis e k1),(Vis e k2) are bisimilar when they carry the
same effect e and that their continuations k1,k2 are bisimilar on all possible arguments.

• eutt_clo_bind: says that we can peel off the first expression in an itree program when the ex-
pressions are bisimilar (t1 ≈ t2) and the remaining programs are bisimilar ((k1 u1) ≈ (k2 u2))
under all related inputs (u1 Rel u2).

r1 Rel r2eqit_Ret
(Ret r1) ≈ (Ret r2)

forall u, (k1 u) ≈ (k2 u)
eqit_Vis

(Vis e k1) ≈ (Vis e k2)

forall u1 u2, u1 Rel u2 -> (k1 u1) ≈ (k2 u2) t1 ≈ t2
eutt_clo_bind

(x <- t1;; k1 x) ≈ (x <- t2;; k2 x)

Figure 11: Some equations for reasoning about bisimilarity

Using these rules, we can prove that the denotations of bb0 and bb1 are bisimilar as seen in
Figure 12. The base of the proof tree begins with a statement that the denotations of bb0 and bb1 are
bisimilar. The proof proceeds by peeling off the first expression of each itree program by applying the
rules in Figure 11. For syntactic bisimilarity, the relation Rel we are using here is definitional equality
(eq) which will not suffice for semantic bisimilarity; we will discuss this in the next section. The code
for this proof is here.

reflexivity u = ueqit_Ret
forall u : nat, (Ret u) ≈ (Ret u)

eqit_Vis
vis (GetReg 1) (fun x : nat => Ret x) ≈ vis (GetReg 1) (fun x : nat => Ret x)

reflexivity
1 = 1eqit_Ret

(Ret 1) ≈ (Ret 1) ...

Ret f0 Ret f0
trigger (SetReg 1 (r + r0));; ≈ trigger (SetReg 1 (r + r0));;
r0 <- Ret 1;; r0 <- Ret 1;;

eutt_clo_bind

Ret f0 Ret f0
trigger (SetReg 1 (r + r0));; trigger (SetReg 1 (r + r0));;
r0 <- Ret 1;; ≈ r0 <- Ret 1;;
r <- trigger (GetReg 1);; r <- trigger (GetReg 1);;

Figure 12: Partial proof that BB0 ≈ BB1

4 Semantic Bisimilarity

Syntactic bisimilarity can be used to prove the correctness of some structural transformations on
LLVM and asm programs(like block fusion seen here) but, as we will see shortly, it does have lim-
itations. Let’s try to prove syntactic bisimilarity of two instructions: i1 : Iadd r3 r1 r2 and
i2 : Iadd r3 r2 r1.

(GetReg 1) ̸= (GetReg 2)
eqit V is

Vis (GetReg 1) (fun x : nat => Ret x) ≈ Vis (GetReg 2) (fun x : nat => Ret x) ...
eutt_clo_bind

trigger (SetReg 3 (lv + rv)) trigger (SetReg 3 (lv + rv))

rv <- trigger (GetReg 2);; ≈ rv <- trigger (GetReg 1);;

lv <- trigger (GetReg 1);; lv <- trigger (GetReg 2);;

Figure 13: Failed proof that i1 ≈ i2
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This proof fails because the eqit_Vis rule requires that the effects e in (Vis e k) be equal. But
we have1 (Vis (GetReg 1) ..) ≈ (Vis (GetReg 2) ...) as a subgoal. The solution to this dilemma
requires two components; 1) provide an interpretation of the effects in asm (GetReg, SetReg, Load,..)
and 2) enhance the relation Rel.

4.1 Interpreting Effects

To prove i1 and i2 are bisimilar, we need to say what effects like GetReg,SetReg,.. mean. In order
to do that, we need to model memory and registers. This simplest model of memory is a map from
addresses to values and for registers, a map from registers to values. This simplistic model will be good
enough for this tutorial but, as stated in the VeLLVM paper [ZBY+21], having an accurate memory
model is challenging and necessary to prove certain LLVM optimizations. If we model memory/registers
as maps from addresses/registers to values, then GetReg/Load is just a map lookup and SetReg/Store
is just an insertion into the map. This interpretation is represented by h_reg and h_memory respectively
and the code can be found here.

Definition registers := alist reg value.

Definition memory := alist addr value.

Definition h_reg {E: Type -> Type} `{mapE reg 0 -< E}

: Reg ~> itree E :=

fun _ e =>

match e with

| GetReg x => lookup_def x

| SetReg x v => insert x v

end.

Definition h_memory {E : Type -> Type} `{mapE addr 0 -< E} :

Memory ~> itree E :=

fun _ e =>

match e with

| Load x => lookup_def x

| Store x v => insert x v

end.

(** The _asm_ interpreter takes as inputs a starting heap [mem] and register

state [reg] and interprets an itree in two nested instances of the [map]

variant of the state monad.

*)

Definition interp_asm {E A} (t : itree (Reg +' Memory +' E) A) :

memory -> registers -> itree E (memory * (registers * A)) :=

let h := bimap h_reg (bimap h_memory (id_ _)) in

let t' := interp h t in

fun mem regs => interp_map (interp_map t' regs) mem.

Figure 14: Interpretation of asm effects

interp_asm converts an itree (t : itree (Reg + Memory + E) A) with the register (Reg) effect,
memory (Memory) effect, and return type A to an itree (itree E (memory * registers * A)) with
effect E and return type (memory * registers * a). Next we need to define when itrees of type
itree E (memory * registers * A) are bisimilar.

1(trigger (GetReg r)) desugars to ((Vis (GetReg r) (fun (x : nat) => Ret x ))
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4.2 Enhance Rel

Relations are built up compositionaly. The code can be found here

• eq_map : two maps are equal when they return the same value for all possible keys.2

• EQ_registers/EQ_memory : Both are instance of eq_maps fixed to their respective types.

• rel_asm : describes what it means for two elements a,b of type memory * registers * B to
be related. For this we take the product of relations EQ_memory,EQ_registers,eq where eq is
definitional equality.

• EQ_asm : describes what it means for two itrees t1,t2 of type itree (Reg + Memory + E) A to
be related. We say that t1 ≈ t2 when their results are related by rel_asm and they ”execute”
in a setting where their memory states are related (by EQ_memory) and register content is related
(by EQ_registers).

Definition eq_map (m1 m2 : map) : Prop :=
forall k, lookup k m1 = lookup k m2.

Definition EQ_registers (regs1 regs2 : registers) : Prop :=
eq_map regs1 regs2.

Definition EQ_memory (mem1 mem2 : memory) : Prop :=
eq_map mem1 mem2.

Definition rel_asm {B} : memory * (registers * B) -> memory * (registers * B) -> Prop :=
EQ_memory ⊗ EQ_registers ⊗ eq.

Definition EQ_asm {E A} (f g : memory -> registers -> itree E (memory * (registers * A))) : Prop :=
forall mem1 mem2 regs1 regs2,

EQ_memory mem1 mem2 ->
EQ_registers regs1 regs2 ->
eutt rel_asm (f mem1 regs1) (g mem2 regs2).

Figure 15: Defining a relation for interpreted asm programs

4.3 Bisimilarity of i1 and i2

We now have some additional proof rules to deal with interp_asm. We will denote the bisimulation
relation EQ_asm by ∼∼∼.

interp_asm_SetReg
interp_asm (trigger(SetReg r v);; f) mem reg ∼∼∼ interp_asm f mem (add r v reg)

interp_asm_GetReg
interp_asm (v <- trigger(GetReg r);; f v) mem reg ∼∼∼ interp_asm (f (looup r reg)) mem reg

Figure 16: New rules for interpreted effects

Variable x : nat.
Variable y : nat.
Variable mem : memory.

Definition startReg : registers :=
[

(1,x);
(2,y)

].

Figure 17: Starting memory/register configuration

2This is a restrictive notion of map equality, we could relax this to say that each map has the same values, but we
won’t do that here
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reflexivity
EQ_memory mem mem

reflexivity
EQ_registers (add 3 (x + y) startReg) (add 3 (x + y) startReg)

plus_commutative
EQ_registers (add 3 (x + y) startReg) (add 3 (y + x) startReg)

reflexivity
tt = tt

prod_rel
rel_asm (mem, (add 3 (x + y) startReg, tt)) (mem, (add 3 (y + x) startReg, tt))

eqit_Ret

Ret(mem,(add 3 (y + x) startReg, tt))

∼∼∼
Ret(mem,(add 3 (x + y) startReg, tt))

interp_asm_SetReg

startReg startReg
mem mem
trigger (SetReg 3 (x + y)) ∼∼∼ trigger (SetReg 3 (y + x)

interp_asm interp_asm

interp_asm_GetReg

startReg startReg
mem mem
trigger (SetReg 3 (x + rv)) trigger (SetReg 3 (y + rv)))

(rv <- trigger (GetReg 2);; ∼∼∼ (rv <- trigger (GetReg 1);;

interp_asm interp_asm

interp_asm_GetReg

startReg startReg
mem mem
trigger (SetReg 3 (lv + rv))) trigger (SetReg 3 (lv + rv)))

rv <- trigger (GetReg 2);; ∼∼∼ rv <- trigger (GetReg 1);;

(lv <- trigger (GetReg 1);; (lv <- trigger (GetReg 2);;

interp_asm interp_asm

denote_instr

interp_asm (denote_instr i2) mem startReg.

∼∼∼
interp_asm (denote_instr i1) mem startReg

Figure 18: Successful proof that i1 ≈ i2

The proof begins at the base of Figure 18 by stating that the asm interpretation of the denotations
of instruction i1 and i2 are bisimilar according to EQ_asm. We then interpret all the GetReg and
SetReg effects as reads/writes to the registers map. At that point, we have a Ret node holding a
value of type memory * registers * unit. Recall that eqit_Ret states that Ret v1 ≈ Ret v2 when
v1 Rel v2, that is to say they are related by our bisimilation relation. In this case, our bisimilation
relation is rel_asm which is a product of three relations: EQ_memory, EQ_registers,eq. The first
and third case hold by reflexivity. The middle case which says i1 and i2 performed the same
updates to the register map holds after we use commutativity of addition. The code for this proof can
be found here.

5 Composing Transformations

At this point, we have enough tools to demonstrate the equivalence of an assembly program after
multiple transformations including dead branch elimination, block fusion, constant propagation, and
constant folding. We will not go into detail in this section as the proofs get quite long. Instead, the
reader should refer to the code which has tutorial syle comments for guidance. Instead, we give a
visualization of the transformations on a concrete program and point to where the proofs are in the
repository.
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bb1:
r1 := 0
Bbrz r1 bb2 bb3

bb2:
r2 := 3
Bjmp bb4

bb3:
r2 := 4
Bjmp bb4

bb4:
r2 := r1 + 1
Bhalt

Figure 19: program 1: Initial asm program

bb1:
r1 := 0
Bjmp bb2

bb2:
r2 := 3
Bjmp bb4

bb4:
r2 := r1 + 1
Bhalt

Figure 20: Program 2 : after dead branch elim

bb5:
r1 := 0
r2 :=3
r2 := r2 + 1

Figure 21: Program 3 : after block fusion

bb6:
r1 := 0
r2 := 4

Figure 22: Program 4 : after constant propogation and folding

• program1 ∼∼∼ program2: proof

• program2 ∼∼∼ program3: proof

• program3 ∼∼∼ program4: proof

• by transitivity, program1 ∼∼∼ program4 proof

These proofs follow the same style as Figure 18. However, there are many additional proof com-
plications; the main one being jumping to new basic blocks. To ease some of the proof burden, I’ve
created custom tactics to make pushing the denotation and interp functions through terms a bit easier.
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