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1 Introduction
Can a compiler check that a function in a functional language runs in polyno-
mial time? Compilers can use type systems to statically enforce a wide vari-
ety of properties from security level non-interference[VS97][OLEI19], memory
safety[Rey02][Rus], resource usage[OLEI19], and correctness[LPR+20]; so how
about time and space complexity? It turns out that that they can, and we will
demonstrate programming in some of these langauges in this report, but there
are many complications and it will lead us into the field of Implicit Compu-
tational Complexity Theory(ICC)[DL22].

Implicit Computational Complexity is an important bridge between type the-
ory and computation complexity, the ICC conference puts it like this: “implicit
computational complexity provides a framework for a principled incorporation
of computational complexity into areas such as formal methods in software de-
velopment, the study of programming languages, and database theory.” [icc]

In this mini survey, we will cover the practical results of ICC as a framework
for designing programming languages which are sound for a certain complexity
class and the theoretical results of ICC as a branch of complexity theory.

2 Lambda Calculus and Complexity
Unlike regular complexity theory, ICC is heavily inspired by researches in pro-
gramming languages and formal logic, which assumes a computational model
different than the usual Turing machine. In this section, we introduce the lambda
calculus, and briefly explain why lambda calculus in its simplest form (untyped
lambda calculus) is not that suitable for studying complexity theory.

2.1 Lambda Calculus
The simplest form of lambda calculus is untyped lambda calculus, where the
basic units are lambda terms. A lambda term is one of the following:

1. x: a variable that is any identifier representing a parameter.
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2. λx.M : a lambda abstraction defines a function that takes in a param-
eter x and returns the function body M .

3. MN : an application of M on N , which evaluates M as a function with
N as a parameter by substituting the parameter of M with N . (This is
called substitution or β-reduction)

For example, consider the following “add“ function in lambda term:

add := λx.λy.x+ y

To see lambda term evaluation in action, we can apply add to any two numbers:

add 4 5 → (λx.λy.x+ y) 4 5

→ (λy.4 + y) 5 (substitute x with 4)
→ 4 + 5 → 9 (substitute y with 5)

The simple syntax of untyped lambda calculus gives it very strong flexibility,
and allows simple terms to have unexpected behaviours. For example, consider
this term ω:

ω := (λx. x x) (λx. x x)

If we try to evaluate this term:

(λx. x x) (λx. x x)

→(λx. x x) (λx. x x)

→(λx. x x) (λx. x x)

→ . . .

In each step we substitute x in the left (λx. x x) with (λx. x x), which would
give back the same term! This is the easiest case of a term that diverges, or
simply loops forever.

In fact, using a similar construction, we can construct a term that not only
loops forever, but even grows in size:

(λx. x x x) (λx. x x x)

→(λx. x x x) (λx. x x x) (λx. x x x)

→(λx. x x x) (λx. x x x) (λx. x x x) (λx. x x x)

→ . . .

These kind of behaviours suggest that untyped lambda calculus might sometimes
be too flexible and hard to use. In fact, because function application in lambda
calculus is just substitution, it cannot specify what inputs to take that would
make sense. Consider back the add example:

add True 5 → (λx.λy.x+ y) True 5

→ (λy.True+ y) 5

→ True+ 5 → ?
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This motivates the use of type systems to limit inputs to terms. This leads to
what’s called simply typed lambda calculus, and constitutes the basics of many
of todays function programming languages.

In simply typed lambda calculus, each lambda term would have an associated
type, such as base types int, bool, or function types int → bool, etc. A lambda
term only evaluates when the input’s type matches the type the function accepts.
We’ll see later in this report that we can use type systems to regulate semantic
behaviours of programs, including running time.

2.2 Measuring Complexity
An important first question, therefore, is how do we even measure the time com-
plexity of a functional programming language? A Naive answer is to suggest
that you can measure the number of times you apply a function (often called a
β-reduction). This falls down, however, because the amount of time it takes a
computer to perform all the substitutions of a β-reduction could depends on the
size of the expression. Thankfully [ADL16] showed as recently as 2016, that a
polynomial number of β-reductions does indeed imply that a function is taking
a polynomial number of steps. Since this result was only available very recently,
much of the other prior work on polynomial-time functional programming re-
lies on a different strategy, namely interpreting the functional language on a
polynomial-time Turing machine.

This result doesn’t, however, generalize to space complexity classes and smaller
time complexity classes. In 2022, [ADLV22a][ADLV22b] provide the first rea-
sonable result for studying logarithmic space using the pure, untyped, lambda
calculus. There had been many previous results for logarithmic space under var-
ious conditions and using alternative tools like graph rewriting, and the Krivine
abstract machine. This recent work addresses their deficiencies and simplifies
the results.

For the full details on measuring the complexity of lambda calculus, we will
refer the reader to the previously mentioned papers. Our focus will be on
syntax level language features that allow programming languages to capture
polynomial time.

3 LFPL
LFPL is a type system that guarantees polynomial runtime, and when awk-
wardly extended with non-iterable versions of iterable data structures can com-
pute all polynomial-time functions.

There are two main principles that keep LFPL programs to polynomial time.
Firstly, lambda variables can only be used at most once within a function body.
Secondly, iterable data structures require an object of type � to “pay” for the
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construction of the data type. These diamonds can’t be created except for by
deconstructing other data structures.

LFPL has the following programming constructs available:

Function Abstraction and Application
Functions introduce the forms λx : T. e and e e. Notably x can only be
used at most once within the body of e because the functions in LFPL are
affine linear. We use T ((( T to denote the type of linear functions.

Products (Tuples)
There are two different types of product, which we will write with e× e
and e⊗ e. We use the same notation for their types, T × T and T ⊗ T
The difference is that the first product allows you to use the same variable
on both sides of the product (i.e. x × x is allowed, as an exception to
the “variables are only used once” rule), but only allows you to isolate
either the left or the right hand side later. You must choose whether you
want fst (1 × 2) (which evaluates to 1) or snd 〈1,2〉 (which evaluates
to 2). In contrast, the second kind of product does not let you use the
same variable on both sides, but you can then deconstruct the tuple using
let x⊗ y = e in e.

Iterable Datatypes
The canonical example of iterable data types is binary numbers, which
we will give type N have constructors Nil : N, S0 : � ((( N ((( N, and
S1 : � ((( N ((( N, where Nil constructs an empty number and S0 and S1
append either a zero or a one to the right end of the number. Notice that
both successor constructs have a “diamond” argument. These diamonds
cannot be created during execution, they must have been provided in the
input.

The iterator for the binary numbers takes the form iterN(e, f ,g) : N ((( T
where e has type T and f and g both have type � ((( T ((( T for some
type T. It is also worth noting that e, f and g cannot use vari-
ables from outside the iterator. This iterator begins with e and then
traverses the given number from right to left, calling f on its result if it
sees a 0 and calling g if it sees a 1. Notice that the constructors that
required a diamond give that diamond back to us in the iterator so we can
build up another data structure.

We can extend this idea to lists with constructors Emp : ListT and Cons :
� ((( ListT ((( ListT.

Non-Iterable Datatypes
Finally we add non-iterable datatypes to LFPL. The key idea here is
that these datatypes do not require a diamond to build, but to prevent
them increasing the runtime to exponential, we cannot use them to run a
function multiple times.

Let us first consider the booleans of type B. We have two constants true
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and false, and an if construct if : B ((( (T×T) ((( T. Notice that we
used the parallel product × since we know the if will always discard one
of the branches.

We can also make a non-iterable version of the binary numbers. Let’s
call this N′. This data type has perhaps more expected types on its
constructors: Nil′ : N′, S′

0 : N′ ((( N′, and S′
1 : N′ ((( N′. In the absence

of an iterator, we add some functions for querying bits of the number:
iszero : N′ ((( B⊗N′ to check if a number is zero (and return the number
itself, so we can continue working with it), head : N′ ((( B⊗N′ to check
the final digit of a number, and tail : N′ ((( N′ that removes the last digit.

3.1 Programming in LFPL
Programming in LFPL is quite restrictive, which makes it awkward to even
program simple functions. Let’s start with a simple list append function. In a
normal language, we might expect this function to look something like this:

append(L1, L2) , iter(L2, (λx, ys. Cons x ys)) L1

There are a couple reasons, however, that this is not valid in LFPL. The first
is that we have not paid a diamond to build the list constructor, nor have we
received a diamond for iterating through it. This one is easy to fix, we just add
a diamond to the loop body: (d, x, ys → Cons d x ys)

The second, harder, issue is that inside the arguments to iter we do not have
access to the variable L2, (we cannot use variables from outside the iterator
inside the iterator). To fix this, instead of using the iterator to build up the
list, we instead have to use the iterator to build up a function that appends
something to L1:

append(L1) , iter(λL2. L2, λd x f. λL2. Cons d x (f L2)) L1

3.2 Completeness: Running a Turing machine
While this language feels very restrictive, it is in fact able to simulate any
polynomial-time Turing machine. This is important because it means we can
run any polynomial-time algorithm in this system. The non-iterable datatypes
are important: it was originally shown [Hof99] that any non-space-increasing
polynomial-time calculation can be done in LFPL, but it was later [AS02]
[Hof03] extended to any polynomial-time calculation by adding non-iterable
datatypes. We will show that this language is ‘complete’ for polynomial time
by showing that we can simulate any Turing machine for any polynomial number
of steps.

First we need to build up a data structure for storing the state of a Turing
machine. For the head, we can use a boolean to store the state currently under
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the head of the machine, and then two non-iterable natural numbers to store
the tape to the left and to the right of the head. For the machine’s internal
state, we can just use a series of booleans. If we product all this together using
⊗, we get a Turing machine state, S.

S , (N′ ⊗B ⊗ N′)⊗ (B ⊗B ⊗B . . . )

From this we can build a state transition function t : S ( S for our Turing
machine, that transitions one state of the Turing machine. We won’t give an
example t here because it would be quite long.

Once we have a transition function t, all we need to do now is to copy the input
onto the tape, and then find a way to run the transition function polynomially
many times.

Hofmann [Hof99] uses a # operation that takes a f(n) : N → N, and turns it
into another function f#(n) : N → N which is the result of applying f length(n)
times.

f#(n) = iter(

m → m,

d → g → m → f(g(m@[0]d)),

d → g → m → f(g(m@[1]d))

) n Nil

We’ve used the notation m@[1]d to indicate that we want to add a 1 as the
most significant digit to m, paid for using d. This function will look similar to
append from above.

Now, using this operation, we can run t any polynomial number of times. We
can run it a scalar number of times using function composition. For example,
(t(t(t(x))) applies t three times. We can extend this to polynomials with the
operator, for example f runs the transition function |n3| times.

3.3 Soundness: how LFPL guarantees polynomial runtime
Let us briefly address the question of how we know that LFPL programs take
polynomial time to run. The full proof was given in the original LFPL paper
[Hof99], we’ll just sketch out some intuition here.

The first observation to make is that every step reduction in this language,
with the exception of iteration, makes the expression smaller. This is why we
are using linear functions, normal function application can make the expression
grow but copying its input. Because in linear functions, the input is only used
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once, we simply move the application argument to its new position within the
function body and remove the λ guaranteeing that the new expression is smaller.

The hard part of this is dealing with the iteration case, how do we know that
the iteration can only produce polynomial-sized expressions? This is where the
diamonds become useful. We know that there is a fixed number of diamonds n
in the input, and we know that this number will never grow because there is no
way to create a new diamond. This number of diamonds bounds the number of
iterations. The body of an iterator can only therefore be run n times (or m×n
times if the iterator itself has been run m times). This create a polynomial limit
on the number of times any part of the program can be run.

4 Bounded Linear Logic & Graded Modal Types
In Linear Logic, lambda variables must be used exactly once within a function
body. (We should note that we are using the term logic because these type
systems are typically derived from logical reasoning systems using the Curry-
Howard correspondence[Wik23]). LFPL is a bit more flexible because it uses
affine linear logic, where variables can be used at most once in functions. This
draconian limitation guaranteed PTIME soundness at the cost of having an
inexpressive programming language. For instance, linearity disallows natural
presentations of functions like taking the square of a number or performing
safe division. Is it possible to allow more flexibility while preserving PTIME
soundness?

7square ,(λx : int. x ∗ x)
7safeDiv ,(λx : int. λy : int. if (y = 0) then none else some(x/y))

Thankfully, the answer is yes and it begins with Girard et al’s introduction of
bounded linear logic[GSS92] in the 90s. Bounded linear logic defines a logic
where variable usage is marked by a natural number denoting the number of
times a variable is allowed to be used. This number is bound by a polyno-
mial. There have been many variations on this idea: [Laf04] tries to remove the
polynomials from the syntax of the language, [DLH09] extendes bounded linear
logic by allowing quantification over resource bounds, and [GS14] reformulates
bounded linear logic as a graded type theory. We will present the modern take
on this idea which uses graded modal type theory [OLEI19] 1[HMWO21].

Graded types allow us to annotate types with a grade, so int might become
int[2] where the [2] indicates that this is a variable that can be used twice. For
example, this is what the square and safe division programs could look like:

1Granule does not currently enjoy PTIME soundness. We have reached out to the authors
of [Atk23] and [OLEI19] to discuss the feasibility of designing a sound and complete PTIME
language using graded modal types.
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3square ,(λx : int[2]. x ∗ x)
3safeDiv ,(λx : int[1]. λy : int[2]. if (y = 0) then none else some(x/y))

These grades can be generalized beyond integers to any set equipped with a
semiring and a preorder structure that is, it must have operations that act like
+,×,≤ and values that act like 0 and 1. Swapping out this semiring allows us
to capture different complexity classes as we will see below.

Two examples of polynomial-time type systems that use types bounded by
grades are soft linear logics [Laf04], in which types are bound by a natural num-
ber, and bounded linear logic [DLH09], in which types are bound by resource
polynomials.

The d`PCF[DLG11] and Geometry of Types[DlP13] line of research does this
more generally. In those systems, terms and types of a higher order language are
indexed by a first order language. The choice of first order language determines
the complexity class of the higher order terms. This allows for a framework
approach to designing and studying ICC systems.

5 Implicit Complexity in Context
In Section 3 and Section 4 we introduced two type systems which are sound
for polynomial time, both of which are variants of linear logic [Gir87]. Many
of the results in ICC are based off of linear or substructural logics. The reason
for this can partially be attributed to the fact that marking usage constraints
on variables was the key insight in what is considered to be a seminal ICC
paper[BC92] by Bellantoni and Cook.

While their work used a model of computation based on Kleene’s algebra of
recursive functions [Kle81], others noticed that the variable usage restriction
could also be captured in typed linear lambda calculus.

Γ ` M : A Weakening
Γ,x : B ` M : A

Γ,x : B,x : B ` M : A
Contraction

Γ,x : B ` M : A

Γ,x : B,y : C ` M : A Exchange
Γ,y : C,x : B ` M : A

Structure rules in a type system dictate how variables in a context can be
used. The three main structure rules are weakening, contraction, and exchange.
Weakening allows for unnecessary variables to be added to the context which
is a form of duplicating data. Contraction allows unused/duplicated variables
to be removed from a context. Exchange allows for variables in a context to
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be used in any order. A substructural type system is a type system that uses
a subset of the structural rules. A linear type system permits the exchange
rule which results in a programming language in which variables must be used
exactly once. An affine type system permits both exchange and contraction
which yields a programming language in which variables must be used at most
once. From these components, various substructural type theories are formed
including LFPL, Elementary Affine Logic, Light Affine Logic, and Light Linear
Logic. All of which are sound for PTIME [LH05].

5.1 Limitations
A type system which is purely linear or purely affine is extremely limited in
terms of its expressiveness as a programming language. That is why linear type
systems for real programming languages[LPR+20] usually add an additional
construct called the bang modality(denoted !). The bang modality reintroduces
a notion of unrestricted variable usage by permitting all the structural rules only
for types annotated with bang(!). For example, the following program terms are
permitted

!Weakening ,λ!x.(x,x) : !A ((( !A⊗ !A
!Contraction ,λ!x.∗ : !A ((( 1

Dereliction ,λ!x.x : !A ((( A

Digging ,λ!x.!!x : !A ((( !!A

(1)

The reintroduction of unrestricted usage breaks soundness w.r.t. any program
running in polynomial time. There is an underlying tension in design space of
ICC type systems between the usability of the language and its soundness.
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Figure 1: LFPL with various extensions [eve]

5.2 Other Approaches and Classes
There is more to the expressiveness of a programming language than bean count-
ing variable usage. Hofmann and Dal Lago have a series of works where they
consider LFPL as a core calculus which they then extend with various program-
ming language features and observe the resulting implicit complexity bounds.
Some of their results are summarized in Figure 1. Take note that the LFPL we
mention in Section 3 is just one of the results in Figure 1.

Complexity Class Type Theory
PTIME/FP [Hof03] [DLH09]
PSPACE [Hof03]
2k-EXP/2k-FEXP [BG20]
P/Poly [MT15]
LOGSPACE [Maz15] [ADLV22b]
PP [DLKO21]
P# [DLKO22]
EQP,BQP,ZQP [DMZ10]

Figure 2: Some ICC results

Over roughly three decades since the seminal Bellantoni and Cook paper, many
complexity classes have been characterized by type theory. Figure 2 contains
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just a small sampling to demonstrate the variety of classes that have been stud-
ied. These include time and space bound computation, non uniform compu-
tation, probabilistic computation, and quantum computation. ICC has proven
to be a useful field of research leading to an understanding of how to write
programming languages which are sound for some resource bound, even if they
aren’t user friendly. But with all these results, has ICC helped us learn any
more about the essence of complexity theory?

5.3 Implications for Complexity Theory
We look towards the Habilitation thesis[Maz17] of Damiano Mazza for answers.
While Scott Aaronson jokes[Aar] about a world in which P v.s. NP is solved using
operads and higher topos theory (mathematics used by modern type theory),
Mazza’s thesis embodies what such an approach could look like. Mazza relies
heavily on tools from categorial logic to explore ICC from a more mathematical
standpoint. From this perspective, he is able to give a 2-operad definition
of lambda calculus and reductions, a framework for representing non-uniform
computation using his parsimonious lambda calculus, and a proof of the Cook
Levin theorem using lambda calculus as the model of computation. While these
results are impressive, section 4.2 of his thesis provides a somber analysis of the
utility of this approach with respect to studying complexity. Mazza claims:

“[ICC] seems to be worthless when it comes to lower bound tech-
niques. ... Not only do we not gain any intuition on the limits of
computation with bounded resources but, more often than not, we
actually lose the ability to prove that such limits exist!”.

Additionally

“We must be realistic and admit that, for the time being, there
is no hope of making progress in structural complexity theory by
use of tools from logic and programming languages theory. This is
particularly frustrating because such tools, like types, categories and
rewriting, seem to be at least as good as the combinatorial ones in
describing computation as a dynamic phenomenon”

In conclusion, Implicit Computational Complexity is a rich sub field of Com-
plexity Theory which provides a foundation for the design of resource bound
programming languages. While there exists multiple languages which are sound
for complexity classes, the usability of these languages is typically poor and
insufficient for daily programming tasks.

6 Project Video Link
https://drive.google.com/file/d/193op9NxbXBDJg-P3z6zDraOUXl9e0daj/
view?usp=sharing
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